Predicting Student Enrollment Using Markov Chain Modeling in SAS

Concurrent Session Thursday, May 30th 3:15pm – 4:00pm

Samantha Bradley, M.A. Applied Economics Office of Institutional Research University of North Carolina at Greensboro

Office of Institutional Research The University of North Carolina at Greensboro

- Public, coeducational state university founded in 1891
- 20,106 students enrolled in Fall 2018
- IR aggregates, analyzes, and disseminates data in support of:
 - Institutional Planning
 - Policy formulation
 - Decision-making for internal/external constituents

Why Enrollment Projections?

IR prepares Enrollment Projections every year

- Headcounts by student level
- Student credit hours by cost category

 Used by UNC System Office during decision-making about university funding

Helps the university plan resource allocation

Identify areas with growth potential

Enrollment Data

 IR maintains SAS datasets of enrollment going back to Fall 2004

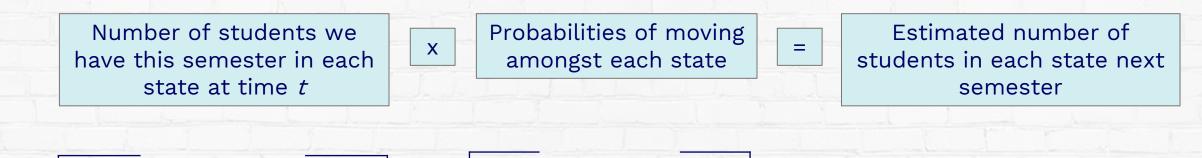
- ♦ 150+ variables:
 - Demographics
 - Areas of study
 - Degree programs
 - ♦ Credit hours

How can we leverage all this data to create the most accurate Enrollment Projections?

Markov Chain Model

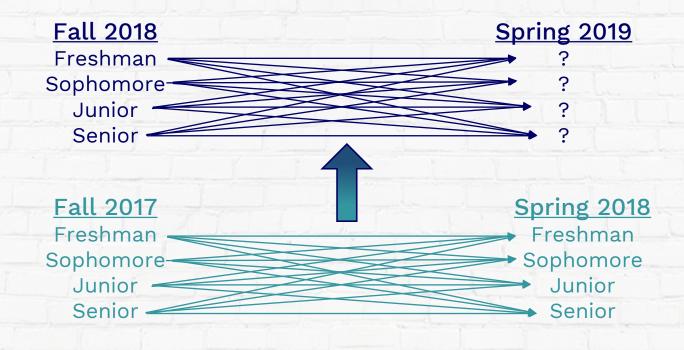
Lets us estimate the movements of a population over time

- The population must be categorized into exhaustive, mutually exclusive groups or 'states'
 - ex.) Freshman, Sophomore, Junior, Senior
- Estimates the probability of moving from one state to another, or remaining in the same state
 - Probabilities are arranged to create a NxN Transition Probability Matrix
 - N is the number of unique states in the model



Markov Chain Model

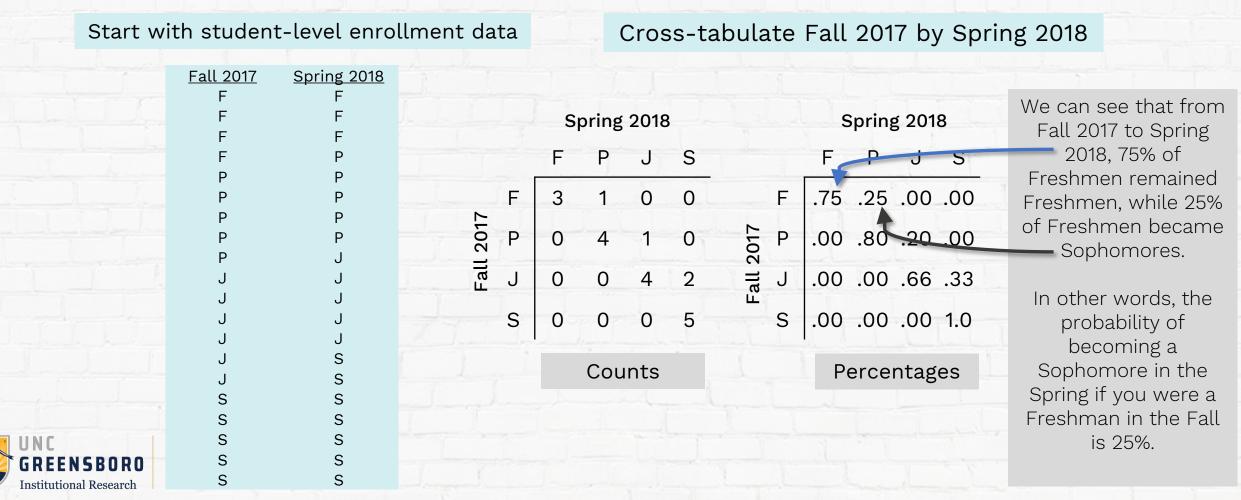
Institutional Research

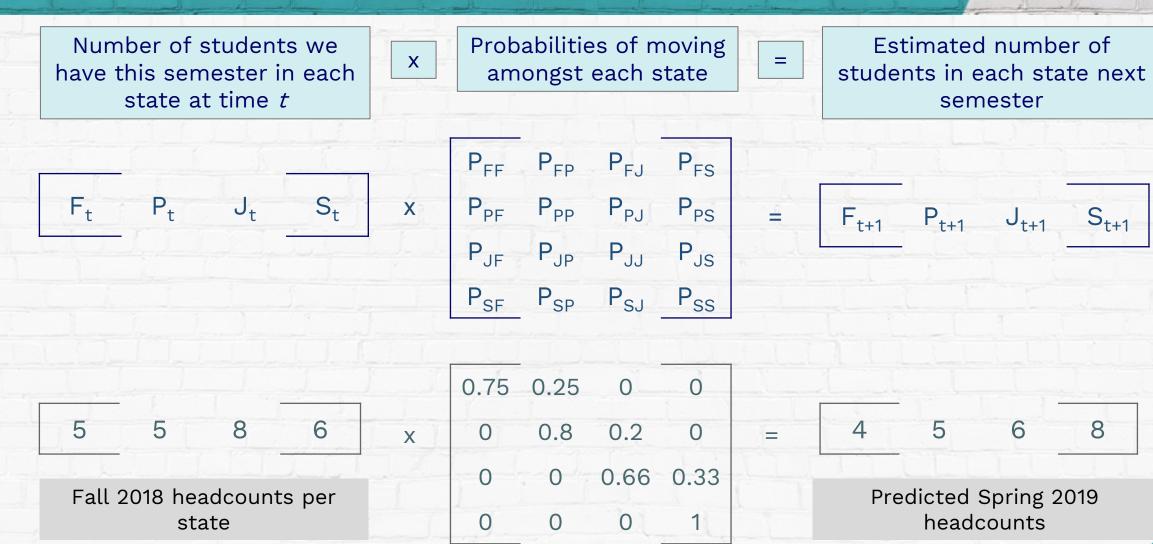

To predict enrollment for next semester, a simple Markov Chain Model looks like this:

Building the Transition Probability Matrix

Let's say we want to predict enrollment for next Spring.

- We know how many students we have in each state *this* Fall
- We can think about this as predicting how students will move between states from <u>this</u> Fall to <u>next</u> Spring
- We can use last year's enrollment data to track movements from <u>last</u> Fall to <u>last</u> Spring

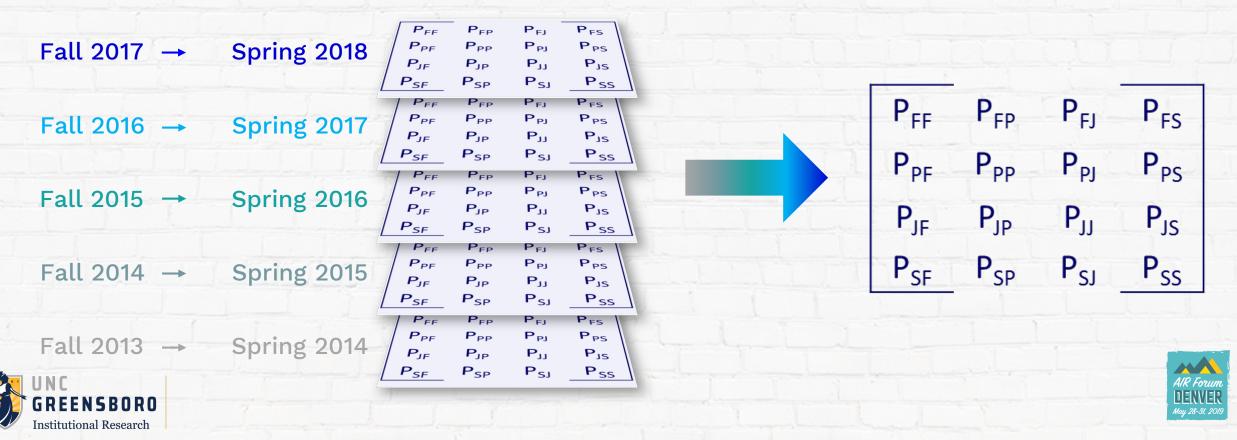




Building the Transition Probability Matrix

- We can compare our Fall 2017 headcounts in each state to our Spring 2018 headcounts in each state.
- Cross-tabulate Fall 2017 by Spring 2018 and calculate the row percentages:

Simple Markov Chain Model


Transition Probability Matrix based on state flows from Fall 2017 to Spring 2018

Enhancing the Model

We have so much data, we should be using it!

- Incorporate 5 years of historical data
- Build five Transition Probability Matrices for each set of historical Fall to Spring terms
- Average them to create a master Transition Probability Matrix

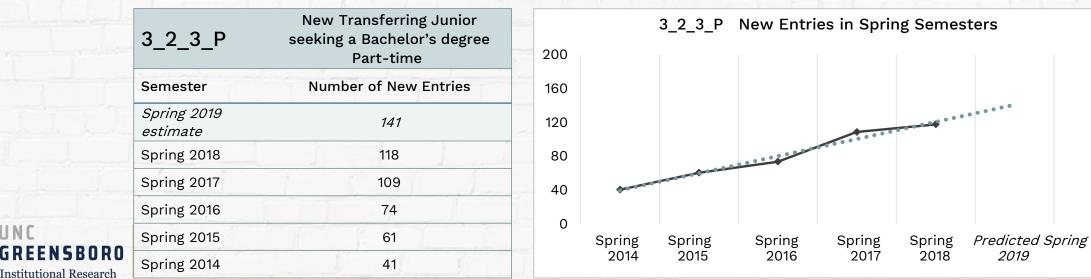
Enhancing the Model

Create detailed states to track granular flows of students

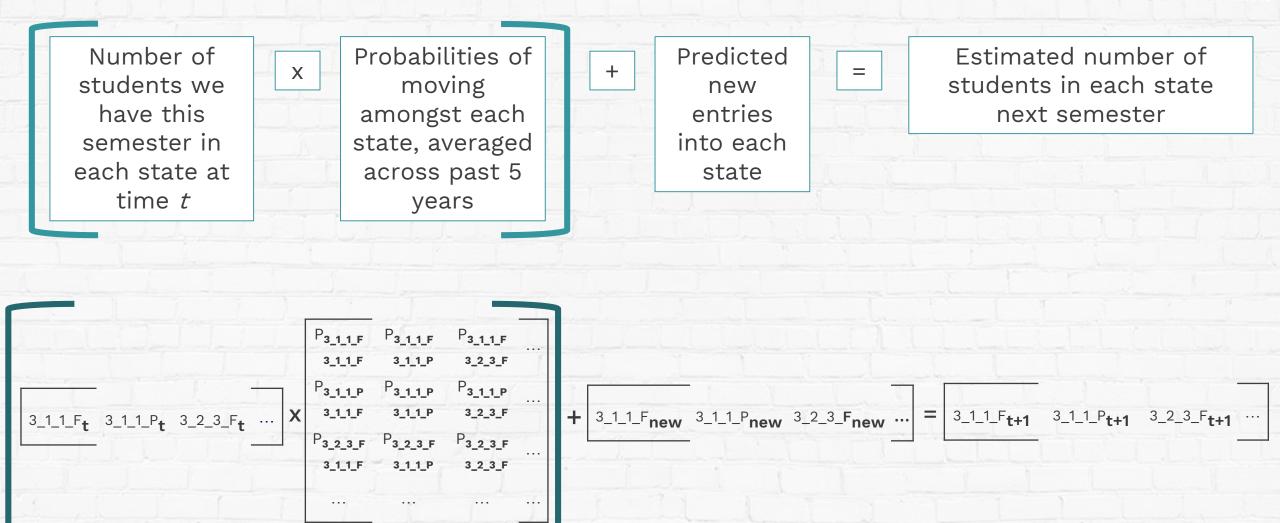
 Concatenate multiple variables to create detailed states that are exhaustive and mutually exclusive

	England	
3 Bachelor's2 Student34 Master's3 Continuing Student45 Post Master's Certificate4 Returning Student68 Unclassified6 Unclassified6	Freshman Sophomore Junior Senior Unclassified Undergraduate Graduate	F Full-time P Part- time

Example: **3_2_3_P** is a new transferring junior seeking a Bachelor's degree part-time



New Entries


There are new students entering and exiting the university every semester

- Exits are already accounted for by using the Transition Probability Matrix
- New entries must be modeled separately
 - Use our semester pairings to identify how many new students enter in each Spring
 - Flag students who were not here in Fall, but were here in Spring
 - Our data shows that new entries are very consistent across semesters, so we can
 estimate future new entries using linear regression

Enhanced Markov Chain Model

Markov Chain Modeling in SAS

- Efficiently process large data
 - Combine multiple historical datasets
- Dynamic model
 - Enter term predicted, SAS does the rest
- Concatenate multiple variables to create detailed flow states
 Very large Transition Probability Matrices
- Easily conduct multiple kinds of analyses
 Regressions, cross-tabulations, matrix algebra, etc.

Dynamic SAS Programming

Macro Variables Minimizes risk of user-error

 Simple to update

♦ Efficient

Macro Programs

only element the user changes

/* Enter the projection term */
%let projection=201801;

SAS processes simple arithmetic to create variables for past semesters.

Given a projection term of '201801', code resolves: semester0 = 201801semester1 = 201708semester2 = 201701semester3 = 201608semester4 = 201601semester5 = 201508semester6 = 201501semester7 = 201408semester8 = 201401semester9 = 201308semester10 = 201301semester11 = 201208

G R E E N S B O R O Institutional Research DATA null; IF substr("&projection", 5, 2) = "01" THEN DO; semester0=PUT(&projection, 6.); semester1=PUT(&projection-93, 6.); semester2=PUT(semester1-7,6.); semester3=PUT(semester2-93, 6.); semester4=PUT(semester3-7,6.); semester5=PUT(semester4-93,6.); semester6=PUT(semester5-7,6.); semester7=PUT(semester6-93,6.); semester8=PUT(semester7-7,6.); semester9=PUT(semester8-93,6.); semester10=PUT(semester9-7,6.); semester11=PUT(semester10-93,6.); predict term=substr("&projection", 5, 2); END; ELSE IF substr("&projection", 5, 2) = "08" THEN DO;

semester0=PUT(&projection, 6.); semester1=PUT(&projection-7, 6.); semester2=PUT(semester1-93, 6.); semester3=PUT(semester2-7, 6.); semester4=PUT(semester3-93, 6.); semester5=PUT(semester4-7, 6.); semester6=PUT(semester5-93, 6.); semester7=PUT(semester6-7, 6.); semester9=PUT(semester8-7, 6.); semester10=PUT(semester8-7, 6.); semester11=PUT(semester10-7, 6.); predict_term=substr("&projection", 5, 2); END; CALL SYMPUT('semester0', semester0); CALL SYMPUT('semester1', semester1); CALL SYMPUT('semester2', semester2); CALL SYMPUT('semester3', semester3); CALL SYMPUT('semester4', semester4); CALL SYMPUT('semester5', semester4); CALL SYMPUT('semester6', semester5); CALL SYMPUT('semester6', semester6); CALL SYMPUT('semester6', semester6); CALL SYMPUT('semester7', semester7); CALL SYMPUT('semester8', semester8); CALL SYMPUT('semester9', semester9); CALL SYMPUT('semester10', semester10); CALL SYMPUT('semester11', semester11);

> The CALL SYMPUT routine creates macro variables for each semester that assign the calculated semester values

PROC SQL NOPRINT; SELECT TRIM(LEFT(NAME)) INTO :cert SEPARATED BY FROM vars WHERE student cat="certificate"; SELECT TRIM(LEFT(NAME)) INTO :ugrd SEPARATED BY ',' FROM vars WHERE student cat="undergrad"; SELECT TRIM(LEFT(NAME)) INTO :mstr SEPARATED BY ',' FROM vars WHERE student cat="masters"; SELECT TRIM(LEFT(NAME)) INTO :spcl SEPARATED BY ',' FROM vars WHERE student cat="specialist"; SELECT TRIM(LEFT(NAME)) INTO :ugnd SEPARATED BY ',' FROM vars WHERE student cat="ug non-degr"; SELECT TRIM(LEFT(NAME)) INTO :grnd SEPARATED BY ',' FROM vars WHERE student cat="gr non-degr"; SELECT TRIM(LEFT(NAME)) INTO :dctr SEPARATED BY ',' FROM vars WHERE student cat="doctorate"; QUIT;

DATA projections; SET iml projection; Certificate=ROUND(sum(&cert),1); Undergraduate=ROUND(sum(&ugrd),1); Masters=ROUND(sum(&mstr),1); creating macro Specialist=ROUND(sum(&spcl),1); variables for each UG Nondegree=ROUND(sum(&ugnd),1); student category GR Nondegree=ROUND(sum(&grnd),1); Doctoral=ROUND(sum(&dctr),1); within a PROC Total=sum(Certificate, SQL step Undergraduate, Masters, call the macro Specialist, UG_nondegree, variables anywhere GR nondegree, throughout the Doctoral); program TERM="&semester0"; KEEP TERM Certificate Undergraduate Masters Specialist UG Nondegree GR Nondegree Doctoral Total; RUN; **PROC PRINT** DATA=projections noobs; TITLE "&semester0 Enrollment Projections"; RUN;

macro program that compares semester pairs to identify new entries between first and second semester

%MACRO entry(i, semestera, semesterb); /* start at the earliest term and work up */ DATA academicyear; SET one; WHERE termcode in("&semestera","&semesterb"); RUN; PROC SORT DATA=academicyear; BY CAMPUS ID TERMCODE; RUN; DATA entry&i; SET academicyear; BY campus id; IF TERMCODE IN("&semester10","&semester11") THEN years past=0; ELSE IF TERMCODE IN("&semester8","&semester9") THEN years past=1; ELSE IF TERMCODE IN("&semester6","&semester7") THEN years past=2; ELSE IF TERMCODE IN("&semester4","&semester5") THEN years past=3; ELSE IF TERMCODE IN("&semester2","&semester3") THEN years past=4; ELSE IF TERMCODE IN("&semester0","&semester1") THEN years past=5; IF FIRST.campus id and termcode="&semesterb" THEN entry=1; IF entry NE 1 THEN DELETE; KEEP termcode enrl campus id flow years past; RUN; **%MEND** entry;

%entry(1, &semester11, &semester10); %entry(2, &semester9, &semester8); %entry(3, &semester7, &semester6); %entry(4, &semester5, &semester4); %entry(5, &semester3, &semester2); uses macro variables — to determine semester pairs macro program that loops through every distinct flow state and conducts a linear regression to predict new entries into each flow state

%MACRO reg;

%DO i=1 %TO &cnt; PROC REG DATA=new_flows_reg NOPRINT; MODEL COUNT=years_past; WHERE flow="&&Var&i"; OUTPUT OUT=new_&i predicted=predict_cnt residual=resid; QUIT; %END; %MEND reg; %reg;

> uses macro variables for each flow state

SAS Methodology

Step 1

- Read in the data student level, most recent term and past 5 years
 - Concatenate Degree, Enrollment Status, Class, and Full-time/Part-time

Step 2

• Create five semester pairings of Springs > Falls (or Falls > Springs)

Step 3

- Create five transition probability matrices for each semester pairing
 - Compare semester pairings to see what percentage of students in each flow state retained, dropped out, or moved to another flow state

Step 4

• Average across the five transition probability matrices to create an overall Transition Probability Matrix

Step 5

• Pull in last semester's enrollment values as our baseline population

Step 6

Use linear regression to model new entries

Step 7

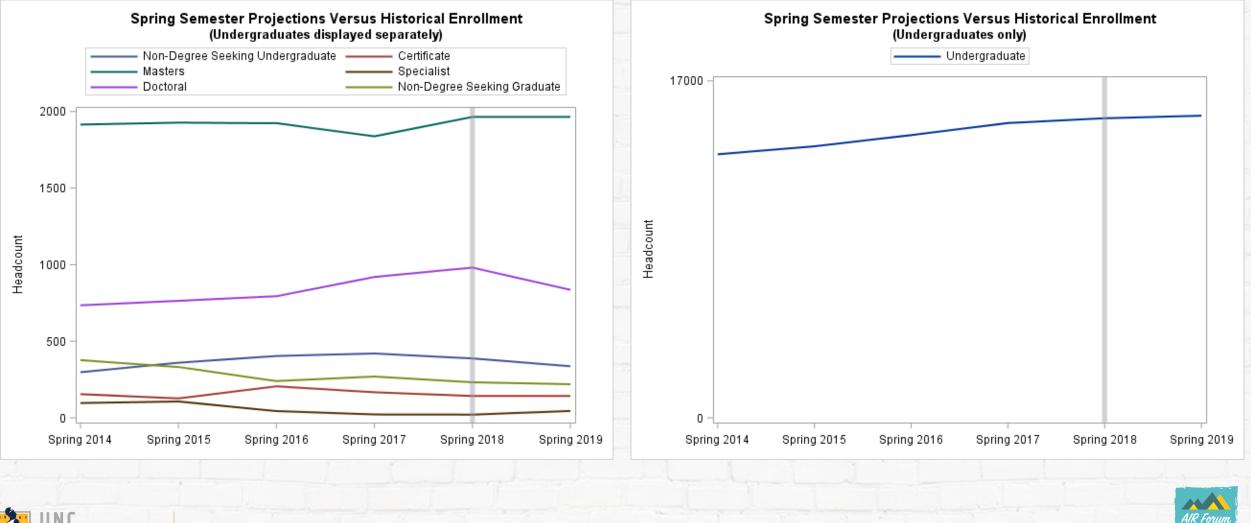
Institutional Research

• Use PROC IML to forecast enrollment for next semester!

PROC IML in SAS

PROC IML; vars={&c_list}; USE trans_matrix; READ ALL INTO trans_matrix; USE base_pop; READ ALL INTO base_pop; USE new_entries; READ ALL INTO new_entries; base_pop=base_pop[1, 2:(&cnt+1)]; new_entries=new_entries[,1:&cnt]; iml_projection=(base_pop*trans_matrix)+new_entries; CREATE iml_projection FROM iml_projection [COLNAME=vars]; APPEND FROM iml_projection; OUIT;

Number of Predicted Probabilities of Estimated number of Х += students in each state students we moving new have this amongst each entries next semester state, averaged semester in into each each state at across past 5 state time t years



Semester	Undergraduate	Non-Degree Seeking Undergraduate	Certificate	Masters	Specialist	Doctoral	Non-Degree Seeking Graduate	Total Enrollment
Spring 2014	13,294	298	155	1,915	97	735	377	16,871
Spring 2015	13,702	360	127	1,927	107	764	332	17,319
Spring 2016	14,265	404	206	1,924	44	794	240	17,877
Spring 2017	14,874	420	167	1,838	22	920	270	18,511
Spring 2018	15,116	388	143	1,965	21	981	232	18,846
Projected Spring 2019	15,242	337	145	1,966	45	836	220	18,791
Actual Spring 2019	15,081	391	137	1,967	52	994	235	18,857

Results

uu 28-31. 20

Questions?

You can download this presentation at: https://ire.uncg.edu/research/PredictEnrollment/SRB-AIR-2019/

Contact info: Samantha Bradley srbradle@uncg.edu (336) 256-0399

Please remember to submit your evaluation for this session.

